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The indentation of a flat punch into a rigid-plastic half-space is modelled by a centred field of slip lines with rotation of the 
rectilinear free boundary about the comer point of the punch. Adjacent to the rectilinear boundary, there is a rigid, stress-free 
region which is calculated using a velocity hodograph and determines the curvature of the initial horizontal boundary of the 
half-space during indentation up to the steady-state stage of the motion of the punch in the unbounded rigid-plastic medium. 
0 2002 Elsevier Science Ltd. Ah rights reserved. 

The problem of the initial plane plastic flow of a rigid-plastic half-space with a rectilinear boundary 
during the indentation of a smooth punch [l, 31 has two solutions, Prandtl’s and Hill’s solutions, with 
the same limit pressure on the punch but a different kinematics of plastic flow. In Prandtl’s solution it 
is assumed that a rigid region moves together with the punch and it is bounded by a straight slip line 
along which there is a discontinuity in the velocity while, in Hill’s solution, it is assumed that there is 
slip of the plastic material along the contact boundary, which is possible in the case of an ideally smooth 
punch. Prandtl’s solution is also applicable when there is contact friction which leads to the formation 
of a rigid region under the punch as in the case of a smooth punch. 

Self-similar solutions of transient plastic flow problems in the case of the indentation of a smooth 
wedge [l] and the compression of a convex semi-bounded body by flat and curvilinear punches [3] are 
known. However, the Prandtl-Hill problem does not belong to the class of self-similar problems and, 
up to the present time, no analysis has been made of the indentation of a flat punch into a rigid-plastic 
medium. Calculations of the initial indentation of rigid punches into an elastoplastic half-space in the 
case of plane and axially symmetric strain using the finite-element method are known [4-61, but the 
severe distortion of the deformable boundary around the edge of the punch as a result of the singularity 
of the plastic flow in this region considerably restricts the possibility of such an analysis. 

The statistically possible fields of slip lines of Prandtl’s type have been used in technological problems 
for calculations of the pressure on a punch when it is indented into a half-space under the assumption 
that the rectilinear vertical plastic boundary around the punch is known [7,8], but the process by which 
this boundary is formed was not considered. 

In this paper, we consider a model of the transient process of the indentation of Prandtl’s and Hill’s 
punch into a rigid-plastic medium from the initial plastic flow up to the onset of the steady motion of 
the punch in an unbounded medium. 

The unsteady indentation of a flat punch into a rigid-plastic half-space is modelled by the centred 
field of slip lines of Prandtl’s and Hill’s type with a discontinuous velocity field. Using a velocity 
hodograph, the relation between the displacement of the punch and the angle of rotation of the 
rectilinear stress-free boundary is obtained and the curvilinear boundary of the half-space is found. At 
the beginning of the indentation, the boundary of the half-space which is displaced has a horizontal 
segment and two curvilinear segments formed by the material which leaves the plastic region. After 
the disappearance of the horizontal segment, the curvilinear boundary asymptotically approaches the 
central axis of the punch, forming a deep crater at the instant when the transition to steady plastic flow 
occurs. 

At the stage of a steady flow over Prandtl’s punch, a hollow is formed with a straight stress-free 
boundary, reaching the vertical axis of symmetry and coinciding with the streamline of the velocity field. 
At the stage of the steady motion of Hill’s punch in a rigid-plastic medium, the hollow under the punch 
disappears. In this case, we obtain a flow about an infinitely thin plate, the lower boundary of which is 
loaded by the plastic pressure while the upper boundary coincides with the stress-free steady boundary 
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of the plastic flow. For both punches, a dependence of the pressure on the punch on the depth of the 
indentation is obtained which asymptotically approaches the maximum value for the steady flow. 

1. A MODEL OF THE PLASTIC FLOW 

When a flat punch is impressed indented along a normal to the boundary of a rigid-plastic half-space, 
the plastic flow region has a vertical plane of symmetry passing through the punch centre, which we 
shall take as the origin of a Cartesian system of coordinates. We shall consider the right-hand half of 
the plastic region. We will assume that the coordinates (x, y), the stresses and the velocities are 
dimensionless, taking the half-width of the punch, twice the plastic constant 2k (k is the shear yield 
stress) and the rate of motion of the punch as the units of length, stress and velocity respectively. 

The field of slip lines and velocity hodographs which satisfy the static and kinematic boundary 
conditions of the problem and the condition for the irreversibility of the dissipation of the energy of 
plastic flow are shown in Fig. 1 for Prandtl’s punch and in Fig. 2 for Hill’s punch. In Prandtl’s and Hill’s 
solutions, the region ACD is loaded up to the plastic state by compression along the horizontal stress 
free boundary AD. A rigid wedge with a vertex at the point D is also loaded up to the plastic state by 
compression along the boundary of the half-space. The pressure on the punch, which corresponds to 
the plastic loading of the region ACD, is equal to the known value 

p = 1 + x/2 (1.1) 

When the punch is indented, the boundary AD rises above the boundary of the half-space and the 
supporting power of the rigid wedge in the neighbourhood of point D is insufficient to transmit the 
plastic compressive stress from the region ACD. As a result, unloading of the material occurs in the 
regionACD and in the rigid region to the right of the boundary CD. We will assume that the rigid plastic 
boundary CD is loaded by pure shear (Fig. 3). The region ACD is loaded by a uni-axial compression 
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-i/2 along the boundaryAD, and the regionA*CD by a uniaxial stress o1 = + l/2 along the boundary 
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Fig. 3 

The Mohr circles for pure plastic shear along the glide line CD and uniaxial loading in the above- 
mentioned regions are shown in Fig. 4. The rigid regions in front of the boundaries AD and A*D are 
stress-free. The points P and PI are the common poles for plastic shear along the slip line CD and uniaxial 
loading in the regionsACD andA*CD with continuous normal stresses in the planes perpendicular to 
AD andA*D. The mean stress o changes abruptly along the normal to the slip line CD, taking a zero 
value on this slip line. 

Hence, in the case of pure shear along the isolated slip line CD, the condition that there is no plastic 
flow in the rigid zones is satisfied for the slip line fields shown in Figs 1 and 2. The angle of inclination 
8 of the boundary AD changes from zero for the initial position of the punch to the steady value 
0, = 2rc/3 in the case of Prandtl’s punch and 0, = 7~ for Hill’s punch. In the case of a steady flow, the 
boundaryAD reaches the vertical line of symmetry and coincides with the streamline. A closed cavity 
with an inclined stress-free boundaryAD is formed above Prandtl’s punch. In the case of Hill’s punch, 
the boundaryAD coincides with the upper boundary of the punchy = + 0, the lower boundary of which 
Y = - 0 is loaded with the plastic pressure. 

The slip line fields and Hen&y’s integrals determine the normal pressure on the punch as a function 
of the angle 8 

p=(I+x)/2+0, oases WI 

The limit pressures on the punch in the case of steady flow are equal to (3 + 7rc)/6 for Prandtl’s punch 
and (1 + 3n)/2 for Hill’s punch. 

The velocity hodographs are shown in Fig. l(b) for Prandtl’s punch and in Fig. 2(b) for Hill’s punch. 
We impose a vertical velocity on the system which is the reverse of the velocity of the punch. In this 
case, the punch is fixed and the rigid-plastic medium moves with a velocity V = 1. The h$dograph for 
Prandtl’s punch is defined by the two different discontinuities in the velocity [Vj = l/k,2 which arise 
at point B and propagate along the rigid-plastic boundaries BA and BD of the slip line field. The 
hodograph for Hill’s punch is defined by a single discontinuity in the velocity [Vj = v’z1. The velocity 
field of the region ABC of the physical plane is mapped onto the hodograph as an arc of a circle with 
centre at the point (l,O). The velocity vector of the points in the region ACD is a function of the angle 
8 and, for both punches, its components can be written in the form 

Fig. 4 
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v, = q-(e), Vy = I+ CC+<0); <+(e) = (cose It sin t3) (1.3) 

for Prandtl’s punch 

2. THE BOUNDARY OF THE HALF-SPACE 

When the angle 8 increases from zero to 0,, the boundary AD of the region ACD rotates about the 
fixed comer pointA, and the point D, which reaches the stress-free external boundary of the half-space, 
describes an arc of the circle DO -D, (Fig. l), the equation of which is 

x=I+cos8/C, y=sinB/C (2.1) 

Point D is common to the left-hand stress-free rigid region, adjacent to the boundary AD, and to the 
right-hand rigid region which moves at a velocity Vy = 1, V, = 0. When the punch is indented, the velocity 
normal to the boundary AD is positive and material particles cross the boundary AD, forming a stress- 
free rigid region in front of this boundary. Simultaneously with this, as a consequence of the rotation 
of the region ACD, material particles cross the boundary DC and reach the right-hand rigid region. 
Since the velocity of the point D in the region ACD is greater than the velocity of the right-hand rigid 
region, a falling curvilinear boundary is formed to the right of the point D, which passes into the 
horizontal boundary of the half-space. 

The displacement h of the boundary of the half-space relative to the punch and the shape of the 
rigid regions are functions of the angle 8. At the beginning of the indentation, the horizontal 
boundary around the punch rises as a rigid body above the remaining boundary of the half-plane, forming 
a flat part. To the left of this part, an ascending curvilinear boundary AF appears, which is formed by 
material particles leaving the plastic region at the corner point of the punch u. Point D is the right- 
hand boundary of the flat part. When the angle 8 increases from zero to the value 8*, the flat part of 
the raised boundary disappears and the whole of the boundary of the half-space around the punch 
becomes curvilinear. 

The first stage of indentation. 8 s 8. When there is a flat part of the raised boundary, the coordinates 
y of this boundary and the point D are defined by the second equation of (2.1), from which we find the 
increment dy = (cos B/C)de. The increments dh and dy are proportional to the velocities Vy of the point 
D o$ the region ACD and V = 1 of the right-hand rigid region dh = dy/V,, where Vy is defined by the 
second equation of (1.3). The relation between dh and de follows from this, and, after integration, we 
find 

h(8) =; cos 8 
o cu + cr+(e)l 

de, 8s 8’ (2.2) 

Integral (2.2) defines the vertical displacement of the horizontal boundary of the half-space when x * 
1 + l/C. The coordinatesx andy of the curvilinear boundary D -Do are defined by Eqs (2.1) for values 
of Or G 8 and by the vertical displacement hr(8, t3,), that is, integral (2.2) with a lower limit of Or 

x=l+c0se,/c, y=sinB,/c+h,(e,e,), ose,se (2.3) 

The increments of the coordinates dr and dy of material particles, moving from the corner point a 
and forming the left-hand curvilinear boundary AF, are proportional to the velocities (1.3) with a 
coefficient of proportionality dh. After integration using relations (2.1), we find thex andy coordinates 
of the boundary AF 

x=I+j %0ser_(e) de 

o I + cue) ’ 
y _ sine, 

c ’ 
oae,se (2.4) 

The coordinates of the point F are defined by Eqs (2.4) when 8, = 8. We find the final value of the 
angle 8* of the first stage of the indentation of the punch from Eqs (2.1) and (2.4) by equating the x 
coordinates of the points D and F 
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case* = cl 
e’ cosB(cos0-sin8)de 

c I + C(cos8+sin8) 
(is) 

The values 8* = 1.479 for Prandtl’s punch and 8* = 1.434 for Hill’s punch were obtained by the 
numerical solution of Eq. (2.5) using Newton’s method. The boundaries of the half-space for the first 
stage of the indentation of Prandtl’s punch (the continuous curve,p = 3.09) and Hill’s punch (the dashed 
curve, p = 2.99) are shown in Fig. 5(a). 

The second stage of indenfution. 8* < 8 < 0,. In the second stage of the indentation of the punch, 
when the angle 0 is increased by de, the line AD crosses the curvilinear boundary of the left-hand rigid 
domain, which corresponds to the angle 8. Material particles in the neighbourhood of point D pass 
from the left-hand stress-free rigid region into the region ACD and leave it through the boundary DC, 
reaching the right-hand rigid region. We find the point P of the left-hand rigid region, which reaches 
a new point D for an increment of the angle de, at the intersection of the line, which passes through 
the point D parallel to the velocity vector (1.3) with the curvilinear boundary AD of the left-hand rigid 
region corresponding to the angle 8. 

For this purpose, we will approximate the curvilinear boundary of the region to the left of the line AD using a 
piecewise-linear relation. We find the direction of the mean velocity vector of the points of the boundary AD when 
the angle 0 is increased by d0 from relations (1.3) 

tga=VY(8+d0/2)/VX(8+d6/2) 

We approximate the direction of the tangent to the boundary of the rigid region close to the point D by the angle 
of inclination of the chord between the points (Xj,Yj) and (Xj+tvyj+t) of this boundary 

We denote the coordinates of the new point D, which are determined by expressions (2.1) for an angle 8 = de, by 
xu andyD and find the point of intersection of the straight line passing through the point D with an angle of inclination 
a and the straight line passing through the points (Xi, yj) and (Xj+t, yj+t) with an angle of inclination fl 

X=(_YD-Yj +Xjtgp- 

-XD tga)h$-tga) 

Y=Yj+(x-xj)tgP (2.6) 

If they coordinate satisfies the inequality 

Yj+l <Y<Yj 

then expressions (2.6) define the point P of the boundary of the rigid region, which is shifted to the point D of the 
new rigid region. Otherwise, we reduce the subscripts j until the above-mentioned inequality is satisfied. 

The vector for the displacement of the boundaryAD of the left-hand rigid region in the new position 
is defined by the increments of the coordinates 
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dx=I+cos(B+d~)lC-xp, dy=sin(O+dO)lC-yp (2.7) 

and the vertical displacement of the boundary of the right-hand rigid region is defined by the equation 

dh=dy/[I+C(sinO+cos8)] (2.8) 

In the transient stage of the indentation of a punch fl# o! and expressions (2.6) uniquely define the 
point P. The equality l3 = a denotes the beginning of steady plastic flow for which the boundary AD 
coincides with the direction of the velocity vector of the points of this boundary, and the point P cannot 
be found using expressions (2.6). Hence, the beginning of the steady stage of the flow around a punch 
can only be determined approximately for values of 8 which are close to 8. 

The boundaries of the half-space for the second stage of the indentation of Prandtl’s punch (the 
continuous curve, p = 3.85) and Hill’s punch (the dashed curve,p = 3.85) are shown in Fig. 5(b). In 
the second stage of indentation, the direction of the velocity vector (1.3) of the points of the region 
ACD approaches the direction of the line AD in the physical plane. The displacement vector of the 
point P and the increments d/z rapidly increase. The stress-free rigid region to the left of the rectilinear 
boundary AD disappears and the boundary of the right-hand rigid region above the point D assumes 
the form of a deep crater, compared with the half-width of the punch, which approaches the axis x = 
0 asymptotically when 8 = OS. The boundaries of the half-space on transforms to steady plastic flow 
are shown in Fig. 5(c) for Prandtl’s punch (the continuous curve,p = 4.14) and Hill’s punch (the dashed 
CUNe, p = 5.0). The corresponding approximate values of the depth of indentation at the beginning of 
the steady flow are equal to h = 5 for Prandtl’s punch and h = 7.5 for Hill’s punch. 

A program was written for calculating the curvilinear boundaries of the half-space during the 
indentation of Prandtl’s and Hill’s punches. The accumulated relative error of the integral condition 
for the incompressibility of the material did not exceed 0.005 for an angular step de = O.OlO at all stages 
of indentation. 

Graphs of the pressure on the punch against the depth of indentation are shown in Fig. 6. These 
asymptotically approach the values (3 + 7n)/6 and (1 + 3rc)/2 for steady flow around Prandtl’s punch 
(the continuous curve) and Hill’s punch (the dashed curve). 
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